Controlling selectivity-Additional factors-1.0 – pH

Lead In the previous post the influence of solvent concentration and solvent type on the selectivity of liquid chromatography (LC) separations was discussed. We saw by systematically altering the solvent concentration, chromatographers can achieve dramatic changes in selectivity and retention. Changing the solvent type during method development, from acetonitrile to methanol, for instance, provided additional selectivity leverage. In some instances, it is advantageous to combine multiple organic solvents. Although varying solvent concentration and type are …

Controlling selectivity-Additional factors-1.0 – pH Read More »

Controlling selectivity-Solvent role-2.0

Lead This is in continuation to my earlier post <https://chiralpedia.com/blog/controlling-selectivity-solvent-role-1-0/> where we discussed the role solvent, first approach – varying solvent strength, in controlling retention factor and selectivity of chromatographic separation. In this post the focus is on the second approach, blending of solvents, to arrive at a good separation of difficult-to-separate peak pairs in HPLC method development. Second Approach: Blend solvents Òne can find suitable separation conditions for many samples simply by adjusting the …

Controlling selectivity-Solvent role-2.0 Read More »

Controlling selectivity-Solvent role-1.0

Lead Choosing a set of initial conditions that would be likely to produce a successful liquid chromatography (LC) separation was the main topic of discussion in the first post in the HPLC method development series. The majority of samples will benefit from starting with a C8 or C18 column packing based on Type B silica using a mobile phase of acetonitrile or methanol modified with water or a low-pH buffer, even though no single set …

Controlling selectivity-Solvent role-1.0 Read More »

Measuring quality of chromatogram – Tools 3.0

Lead In the last post we saw the tools at your disposal to assess the quality of a chromatogram viz. retention factor, peak asymmetry, peak shape, column plate number, and related aspects.  These chromatogram observations are important, but the main purpose of chromatography is to achieve a separation that is reasonable. To ensure whether the separation is satisfactory one need to add one more measurement to the tool box namely the resolution. In this post …

Measuring quality of chromatogram – Tools 3.0 Read More »

Measuring quality of chromatogram- Tools 2.0

Lead In the previous post, “Measuring quality of chromatogram – Tools 1.0” we talked about two of the separation attributes retention time and retention factor. In current post the discussion is on other features viz. peak asymmetry, peak shape, column plate number. and related aspects. This time let us try to answer the following queries to understand how these attributes also help to assess the quality of chromatogram. Peak asymmetry and peak tailing Peak shape …

Measuring quality of chromatogram- Tools 2.0 Read More »

Measuring quality of chromatogram – Tools 1.0

Lead In the previous post, we talked about choosing suitable initial conditions when developing a new liquid chromatography (LC) method. The possibility of a successful separation is increased by selecting the appropriate column conditions and mobile phase composition. Getting the controls that quantitatively measure the separation’s quality is another crucial step in the method development process. Although the majority of chromatographers are able to assess the separation quality from a chromatogram, it is critical to …

Measuring quality of chromatogram – Tools 1.0 Read More »

Selecting the tools

Lead Starting out with a sound strategy is one of the most important aspects of minimizing chromatographic separation issues. A good method makes it much simpler to maintain operation within parameters and address issues as they appear. Selecting the right tools is very critical to achieve the best results,. By looking at the cause-and-effect diagram given below one can understand the factors that influence chromatographic separation. Basically the factors falls into two major categories namely …

Selecting the tools Read More »

HPLC Method Development – prelude

Lead Many chromatographers develop HPLC separations on a daily basis. The philosophy behind method development is founded on a number of factors. Today, chromatographic separation and how it varies depending on the sample and experimental conditions have a good practical understanding. This understanding of the chromatographic process should serve as the foundation for any methodological approach to HPLC method development. Most of the time, a desired separation can be easily accomplished with a minimal number …

HPLC Method Development – prelude Read More »

Protein-based CSPs

Lead Proteins are complex, high-MW biopolymers composed of L-amino acids and possess ordered 3D-structure. They are known to bind /interact  stereoselectively with small molecules  reversibly, making them extremely versatile CSPs for chiral separation of drug molecules.   Number of CSPs has been developed by immobilizing proteins. These type of CSPs operate under RP-mode; (phosphate buffer and organic modifiers)   Characteristics of proteins used in commercial CSPs Mechanism Protein polymer remains in twisted form because of the …

Protein-based CSPs Read More »

Donor-Acceptor (Pirkle)-type CSPs

Lead William H Pirkle developed these CSPs and are  based on the ionic or covalent attachment of one enantiomer of an amino acid derivative to aminopropyl silica. Pirkle phases contain π-electron donor or acceptor rings substituted with H-bonding moieties. Donor–acceptor-type CSPs capitalize on synthetic or semi-synthetic chiral low-molecular-weight chiral selectors capable of recognizing chiral analytes by complementary assembly of nonionic attractive interactions. Basic design and types Generally speaking a chiral phase of the Pirkle type …

Donor-Acceptor (Pirkle)-type CSPs Read More »