Drug stereochemistry

The Hidden Chirality in Drug Metabolites: A metabolic blind spot

“Chirality isn’t hidden — we just stopped looking closely enough” The Unseen Journey After the Dose: 💊 When a patient swallows a drug, the journey is far from over. Sometimes, the real chiral story begins after the dose. The drug molecule meets a series of enzymes — oxidases, reductases, transferases — each capable of transforming it into one or more metabolites. We often assume these are simply inactive breakdown products, but chemistry rarely plays it …

The Hidden Chirality in Drug Metabolites: A metabolic blind spot Read More »

Rediscovery of stereochemistry

Stereochemistry, in particular chirality, is known to us as early as 1809, when Malus, Arago and Biot discovered plane polarized light and its characteristics. It is observed that during 1950s to the 1970s, the “Golden Age” of drug discovery & development, stereochemistry was largely ignored resulting in approximately 57% of pharmaceuticals being marketed as racemates by the 1980s. Before going further let us examine the stereospecific awareness level that existed during 1980s’. Stereospecific Awareness level  …

Rediscovery of stereochemistry Read More »

Cis-trans and E-Z notation: choose your side

“Pharmacological studies confirm the high activity of triprolidine and the superiority of (E) over corresponding (Z) isomers as H, antagonist” ( Ref:   – – – from “Wilson and Gisvold’s Textbook of organic medicinal and pharmaceutical chemistry, 2010”). “Triprolidine is 2-[(E)-1-(4-methylphenyl)-3-pyrrolidin-1-ylprop-1-enyl]pyridine”, the IUPAC name. To understand the above statements one need to be familiar with the “cis-trans and E-/Z- nomenclature. How to translate the name to structure and vice versa? This blog is basically to discuss …

Cis-trans and E-Z notation: choose your side Read More »